

Innovations in Surveying and Geometrical Quality Acquisition on Solid Ground

Innovative terrestrial data acquisition technologies: Mobile Mapping, Close Range Photogrammetry and Panoramic Images. How do these technologies work and how can they be used?

© Fugro 2014 www.fugro.com

Acquisition on Solid Ground

- Panoramic images
 - Distortion, intersection,...

© 2015 Fugro GeoServices B.V.

- Positioning
 - GNSS, Inertial Navigation,...
- Mobile scanning
- Automation

© Fugro 2014 www.fugro.com

1

Mobile Mapping @ Fugro

© Fugro 2014 www.fugro.com

Mobile Mapping @ Fugro

© Fugro 2014 www.fugro.com

2

Mobile Mapping @ Fugro

© Fugro 2014 www.fugro.com

Mobile Mapping in The Netherlands

© Fugro 2014 www.fugro.com

3

Mobile Mapping Concepts

Course Innovations in Surveying and Geometrical Quality

www.fugro.com

Panoramic Images

Course Innovations in Surveying and Geometrical Quality

Camera model

Course Innovations in Surveying and Geometrical Quality

www.fugro.com

Imaging method: Fish-Eye

- Opening angle of 180° x 360°
- Combination of two fish-eye images gives a full panoramic image.
- Application of two images in opposite direction with focal point on the same location.
- Advantage: can be calibrated accurately, no seem lines or blending areas in the image.
- Disadvantage: limited resolution

Course Innovations in Surveying and Geometrical Quality

Imageing method: image stitching

- Multiple images can be combined to one panoramic image.
- Reprojection of separate images onto a sphere
- Advantage: high resolution, better colour balancing.
- Disadvantage: stitch lines can be visible in the image

Course Innovations in Surveying and Geometrical Quality

www.fugro.com

Projection of images on a sphere

Course Innovations in Surveying and Geometrical Quality

Distortion in panorama projection

0 pixel blending

20 pixel blending

100 pixel blending

Image by Point Grey

Course Innovations in Surveying and Geometrical Quality

www.fugro.com

Distortion in panorama projection

Course Innovations in Surveying and Geometrical Quality

Digital imaging of colours

- · Most cameras work with one sensor
- The Bayer filter determines for each pixel which colour it is sensitive to: red, green or blue.

Image by Trusted Reviews

www.fugro.com

Measuring in panoramic images

- Point positioning by forward intersection
- Accuracy depends on:
 - Resolution of the panoramic image
 - Distance of the object to the image
 - Angle of intersection
 - Accuracy of the image position
- Relative: 2 5 cm can be achieved
- Idealisation?

Course Innovations in Surveying and Geometrical Quality

Effect of distance on precision

- Panoramic image is 8000 px x 4000 px
- Therefore: 1 pixel = $360 / 8000 = 0.045^{\circ}$ = 0.000785 rad
- Assume: measurement precision in the image is 1 pixel
- Approximate estimation of distance effect: multiply angular resolution with distance
- For this camera approximately: 8mm / 10m

Course Innovations in Surveying and Geometrical Quality

www.fugro.com

Mobile positioning

Course Innovations in Surveying and Geometrical Quality

Components for positioning

Course Innovations in Surveying and Geometrical Quality

www.fugro.com

GNSS Positioning

- The quality of the GNSS positioning is the prime component of the total error budget of the end result.
- Usually positioning based on PRP (Precise Relative Positioning), which is RTK in post processing.
- By applying Virtual Reference Stations, processing with very short base lines can be achieved. Effects of the lonosphere and Troposphere can be compensated in this way.
- Two important measures for GNSS quality:
 - Number of satellites
 - PDOP (Position Dilution of Precision)

Course Innovations in Surveying and Geometrical Quality

GNSS Systematic errors (RTK)

- Base line: 5 km with high end receivers
- Systematic "waves" of 15mm 20mm

Course Innovations in Surveying and Geometrical Quality

www.fugro.com

Number of satellites

Course Innovations in Surveying and Geometrical Quality

GNSS Effects during a survey

Course Innovations in Surveying and Geometrical Quality

www.fugro.com

How hard can it be?

Course Innovations in Surveying and Geometrical Quality

Additional measurements: intertial navigation

Just GNSS observations is not sufficient

- Recording frequency is 1 Hz This equates to interpolation distances between 10 en 20 m
- GNSS suffers from outages of the solution contains errors.
- Besides position, we also need to know attitude and direction

Intertial Navigation:

- Measurement of accelerations
- Measurement of angular velocity

Course Innovations in Surveying and Geometrical Quality

www.fugro.com

Inertial Navigation

- Inertial Navigation System (INS) comporises:
 - Inertial Measurement Unit (IMU)
 - Software: Kalman Filtering
- An IMU has an internal axis system
- Along every axis the IMU measures:
 - Acceleration (m/s2)
 - Angular velocity (rad/s)
- Typically 100 Hz up to 1000 Hz

Course Innovations in Surveying and Geometrical Quality

Processing INS data

- Data from an INS cannot be used stand alone
- Combination with GNSS gives a stable result. "GNSS Aiding"
- Maximum "GNSS Gap" depends on the type of IMU. For most applications 30 seconds is the maximum allowed GNSS gap.

Course Innovations in Surveying and Geometrical Quality

www.fugro.com

Kalman filtering

Course Innovations in Surveying and Geometrical Quality

Kalman filtering

- Extra smoothing by forward and backward computation.
- Functions of the kalman filter
 - Integration of all observations
 - Statistical tests on these observations. (outlier detection, w-test, F-test)
 - Internal QC on these observations

	Traditional	Mobile Mapping
Geodetic network	Adjustment (Move3)	Kalman filtering
Detail measurement	Direction + distance	Panoramic images, Scanning

Course Innovations in Surveying and Geometrical Quality

www.fugro.com

In addition to kalman filtering

- Further quality improvement can be obtained by:
 - Relative matching Detect objects that were surveyed multiple times and correct such that these objects get the same coordinate.
 - Ground Control Points
 Measure the location of known points and use these to improve the end result.
 Theoretically, this can be a step in the kalman filtering, but it I usually done afterwards.

 With sufficient ground control an absolute

accuracy of 1 cm is feasible.

Course Innovations in Surveying and Geometrical Quality

Survey procedure

- Static initialisation under good GNSS conditions
- Dynamic initialisation to calibrate the IMU
- Survey
- Static closure under good GNSS conditions

Course Innovations in Surveying and Geometrical Quality

www.fugro.com

Insight into kalman filtering

Course Innovations in Surveying and Geometrical Quality

Quality requirements for end results

- Typical requirements
 - Panoramic images: absolute accuracy: 10 cm standard deviation
 - Scanning: absolute accuracy: 3 cm standard deviation

Course Innovations in Surveying and Geometrical Quality

www.fugro.com

Course Innovations in Surveying and Geometrical Quality

Mobile laser scanning

Course Innovations in Surveying and Geometrical Quality

www.fugro.com

Mobile scanners

Maximum distance: 100 m (but max 30 m is recommended)

Range accuracy: < 1 cm</p>

Point measurement rate: 300 000 – 500 000 points / second

Most systems

Eye safe (Class I scanners)

1 or 2 scanners

Inclined mounting to reduce shadow

Observe both ranges and intensity

Combination with images gives RGB values for each point

Course Innovations in Surveying and Geometrical Quality

Building a point cloud

- During a survey all sensors are synchornised by time
 - Time stamp per laser pulse
 - Time stamp per GNSS epoch
 - Time stamp per IMU observation etc.
 - Question: what timing accuracy is needed?
- The position of the scanner with respect to the IMU is calibrated (translation and rotation)
- For each reflected pulse
 - Compute the vehicle position and attitude at that time
 - Apply the pulse distance and direction

Course Innovations in Surveying and Geometrical Quality

www.fugro.com

Point cloud

Course Innovations in Surveying and Geometrical Quality

Integration of airborne and mobile

Cursus Innovatieve Inwinning & Geometrische Kwalitei

www.fugro.com

Applications of point cloud

- Visualisation
- Local map updating (Flaim)
- Height clearance measurements
- DTM for infrastructural design
- Large scale mapping

Mapping the Dutch Rail Network

TUGRO

- Mapping the entire rail network of The Netherlands, including all side tracks.
- Strict requirement: 15 mm standard deviation for each point.
- Combination of Rila, RAIL-MAP and FLI-MAP
- Application of novel point cloud matching method
- Delivery of asset database to client
- Billions of points collected

Cursus Innovatieve Inwinning & Geometrische Kwaliteit

www.fugro.com

Automatic recognition and modelling

Cursus Innovatieve Inwinning & Geometrische Kwaliteit

Cursus Innovatieve Inwinning & Geometrische Kwaliteit

www.fugro.com

Terrestrial Laser Scanning

Cursus Innovatieve Inwinning & Geometrische Kwaliteit

Terrestrial Laser Scanning: application

- Terrestrial Laser Scanning at Petro-Chemical Sites and plants
- Accurate representation of piping network
 - Used for clash detection, pipe system inspection, asset management.
 - Individual scans integrated into one large point cloud (registration)
 - Partly automatic (Iterative Closest Points)
 - Partly manual

Cursus Innovatieve Inwinning & Geometrische Kwaliteit

www.fugro.cor

Summary

- Panoramic images are made with fish-eye lens or stitching
- Panoramic images have distortions
- Within a panoriamic images, points up to a distance of 40 m can be pointed with a precision of 5 cm. Measurements from multiple panoramic images have an accuracy of approximately 10 cm.
- The accuracy of the end result is mostly determined by the quality of GNSS positioning.
- Integration of GNSS and INS is the fundament for further processing
- Ground Control and relative matching can be applied to improve the final result
- Mobile Scanning can be used to collect a 3D point cloud. The accuracy is mostly a function of the positional accuracy.

Thank You

© Fugro 2014 www.fugro.com

http://goo.gl/FZaL7X

Course Innovations in Surveying and Geometrical Quality